At some point in your development journey, you might have to generate random data in Python. In this tutorial, we will see how to do that.
The Python built-in random module is used to generate random numbers (e.g. integers or floats) within a specific range. It also allows generating strings and lists with random elements. The Numpy library also provides the random module to generate random data structures.
We will go through multiple ways of applying the Python built-in random module and the Numpy random module.
Let’s start with some examples!
How Do you Generate a Random Number Between 0 And 1 in Python?
Python provides a module to generate random numbers: the random module.
The most basic method of the random module is the random method.
Here is what the random method does, it generates a random float between 0 and 1:
>>> import random
>>> random.random()
0.7854170732801697
>>> random.random()
0.7340120513329158
>>> random.random()
0.5851946653258203
And what if we want to generate a random float between 0 and 10?
We can use the random.uniform() method and pass two arguments that define the beginning and the end of the range.
>>> random.uniform(1, 10)
1.6010581832190662
>>> random.uniform(1, 10)
6.788702746057039
>>> random.uniform(1, 10)
8.085425419675126
Similarly, to generate a random number between 0 and 100 we use the following command.
>>> random.uniform(1, 100)
80.84958257046604
>>> random.uniform(1, 100)
24.326120311951602
>>> random.uniform(1, 100)
41.81256739317393
How to Generate a Random Float Between 0 and 1 using Numpy
The Numpy library also provides a module to generate random numbers.
Here is how you can generate a random number between 0 and 1 using Numpy:
>>> import numpy as np
>>> np.random.random()
0.335309649692459
>>> np.random.random()
0.4965360512032966
>>> np.random.random()
0.7790850138688835
Numpy also provides the uniform() method that we have seen in the previous section for the Python random built-in module.
Here is how we generate a random float number between 0 and 10 using Numpy:
>>> np.random.uniform(0, 10)
6.811695148603444
>>> np.random.uniform(0, 10)
6.888316097297719
>>> np.random.uniform(0, 10)
1.610517388296695
Later on, in this tutorial, we will see what else we can do with the Numpy random module.
Now let’s generate random integers…
Generate a Random Int in Python
The randint() method of the Python random built-in module generates a random integer.
Here is what happens when I call the randint method without arguments…
>>> random.randint()
Traceback (most recent call last):
File "", line 1, in
random.randint()
TypeError: randint() missing 2 required positional arguments: 'a' and 'b'
According to the error, the randint method expects two arguments. We can get more details using the help function.
>>> help(random.randint)
Help on method randint in module random:
randint(a, b) method of random.Random instance
Return random integer in range [a, b], including both end points.
So, the a and b arguments to be passed to the randint method define the range in which the integer is generated.
With the following command we get back random integers in the range between 1 and 100:
>>> random.randint(1, 100)
11
>>> random.randint(1, 100)
32
>>> random.randint(1, 100)
26
The built-in random module also provides a method called randrange. Let’s find out the difference from the randint method.
This is the help for it:
randrange(start, stop=None, step=1, _int=) method of random.Random instance
Choose a random item from range(start, stop[, step]).
Example of numbers generated with randint
>>> random.randint(1,3)
1
>>> random.randint(1,3)
3
>>> random.randint(1,3)
3
Example of numbers generated with randrange
>>> random.randrange(1,3)
1
>>> random.randrange(1,3)
2
>>> random.randrange(1,3)
2
I have used the examples above to show that the randint method includes both arguments in the range used to generate the random numbers.
On the other side, the randrange method excludes the second argument from the range.
Generate a List of Random Numbers Using the Random Built-in Module
The following code uses the Python random built-in module and a while loop to generate a list of random integers:
>>> random_numbers = []
>>> while len(random_numbers) < 10:
random_numbers.append(random.randint(1, 100))
>>> print(random_numbers)
[49, 2, 37, 9, 43, 26, 89, 71, 60, 41]
The code inside the while loop is executed as long as the list has less than 10 numbers.
The next section shows a way to do this with less code…
Generate a List of Random Numbers Using Numpy
You can also generate a list of random numbers using the Numpy library.
Below you can see some of the methods in the Numpy random module:
>>> import numpy as np
>>> np.random.ra
np.random.rand( np.random.randn( np.random.random_integers( np.random.ranf(
np.random.randint( np.random.random( np.random.random_sample( np.random.rayleigh(
To generate a list of random integers we can use the randint() method. It has the same name as the method we have seen in the Python built-in random module but it’s more flexible.
>>> np.random.randint(1, 10, 10)
array([8, 2, 6, 4, 6, 4, 2, 1, 4, 9])
We have passed three arguments to the method. The first two are used to specify the start (inclusive) and end (exclusive) of the range in which the random integers are generated
The third argument is used to return a Numpy array of 10 elements.
As the third argument, we can also pass a tuple of integers. Here is what happens when we do that:
>>> np.random.randint(1, 10, (5,5))
array([[4, 1, 9, 3, 4],
[7, 1, 8, 1, 2],
[1, 2, 3, 8, 2],
[9, 1, 3, 6, 8],
[9, 9, 4, 8, 6]])
We get back a 5 by 5 multidimensional array (or matrix).
Get Random Elements From a Python List
With the Python random module, you can also retrieve random elements from a list.
Let’s compare the behavior of the following methods when we pass to them a list of characters:
- random.choice()
- random.choices()
- random.sample()
Random.choice()
Returns a random element from a sequence.
>>> random.choice(['h', 'e', 'l', 'l', 'o'])
'o'
>>> random.choice(['h', 'e', 'l', 'l', 'o'])
'h'
>>> random.choice(['h', 'e', 'l', 'l', 'o'])
'o'
Random.choices()
Returns a list of random elements from a sequence. The default size of the list is 1.
>>> random.choices(['h', 'e', 'l', 'l', 'o'])
['l']
>>> random.choices(['h', 'e', 'l', 'l', 'o'])
['o']
>>> random.choices(['h', 'e', 'l', 'l', 'o'])
['o']
Here is how we can generate lists with 2 elements. We have to pass a value for the argument k.
>>> random.choices(['h', 'e', 'l', 'l', 'o'], k=2)
['o', 'l']
>>> random.choices(['h', 'e', 'l', 'l', 'o'], k=2)
['o', 'h']
>>> random.choices(['h', 'e', 'l', 'l', 'o'], k=2)
['e', 'l']
Random.sample()
It also returns k random elements from a sequence.
When we use the method sample() simply passing the list to it we get back the following error:
>>> random.sample(['h', 'e', 'l', 'l', 'o'])
Traceback (most recent call last):
File "", line 1, in
TypeError: sample() missing 1 required positional argument: 'k'
That’s because the sample() method requires the k argument to be passed.
>>> random.sample(['h', 'e', 'l', 'l', 'o'], k=1)
['l']
>>> random.sample(['h', 'e', 'l', 'l', 'o'], k=2)
['o', 'l']
>>> random.sample(['h', 'e', 'l', 'l', 'o'], k=3)
['h', 'l', 'o']
Generate Random Strings in Python
We can use what we have learned in the previous section to generate a random string of characters.
Let’s start from the following:
random.choice(['h', 'e', 'l', 'l', 'o'])
If we apply a list comprehension to the expression above we can create a list of random characters:
>>> [random.choice(['h', 'e', 'l', 'l', 'o']) for i in range(5)]
['l', 'o', 'h', 'o', 'l']
Now we can apply the string join() method to the list generated before:
>>> ''.join([random.choice(['h', 'e', 'l', 'l', 'o']) for i in range(5)])
'holhl'
With the sample() method we don’t need a list comprehension considering that sample() already returns a list.
We can generate a random list whose length is 5 characters simply passing k=5.
>>> ''.join(random.sample(['h', 'e', 'l', 'l', 'o'], k=5))
'loleh'
Before moving to the next section I will show you how to use the string module together with the random module to generate a random numeric string, a random string of letters, and a random alphanumeric string.
Generate a random numeric string
>>> import string
>>> string.digits
'0123456789'
>>> ''.join(random.sample(string.digits, k=5))
'31729'
Generate a random string of letters
>>> string.ascii_letters
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> ''.join(random.sample(string.ascii_letters, k=5))
'qOUtD'
You can also use string.ascii_lowercase or string.ascii_uppercase if you don’t want to mix uppercase and lowercase letters.
Generate a random alphanumeric string
A way to generate an alphanumeric string is by concatenating string.digits and string.ascii_letters.
To concatenate the two strings generated using the string module we will use the + operator.
>>> all_characters = string.digits + string.ascii_letters
>>> all_characters
'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> ''.join(random.sample(all_characters, k=5))
'R7moj'
Makes sense? 🙂
Also, try the same code but this time using string.printable. Have a look at what other characters are included in your random string.
How to Create a Random UUID String in Python
To generate a random UUID in Python you can use the uuid4 function of the uuid module.
>>> import uuid
>>> uuid.uuid4()
UUID('df78ded3-d9f0-419d-a556-78eec59d838b')
>>> type(uuid.uuid4())
<class 'uuid.UUID'>
The object we get back is of type uuid.UUID. To convert it into a string we can use the str() function.
>>> str(uuid.uuid4())
'2bc19645-bb49-45e6-bfc7-f39304e75d27'
Below you can see four functions available in the uuid module to generate UUIDs (including uuid4 that we have just used).

Conclusion
Now you know how to generate random numbers, random strings, and random lists in Python.
Also, just a random question… 😀
What do you need random data for in your application?
Let me know in the comments!

I’m a Software Engineer and Programming Coach. I want to help you in your journey to become a Super Developer!